Oreshin, S., Vinnik, L. Heterogeneity and anisotropy of seismic attenuation in the inner core // Geophys. Res. Lett. 31, L02613, 2004.

Tocheport A., L. Rivera, and S. Chevrot. A systematic study of source time functions and moment tensors of intermediate and deep earthquakes // Journal of geophysical research, vol. 112, b07311, doi:10.1029/2006JB004534, 2007.

Usoltseva O.A., Ovtchinnikov V.M. Application of a simulated annealing method for detection and measurement of parameters of PKIIKP waves // Geocosmos, p. 220, 2016.

Vidale, J.E., Dodge, D.A., Earle, P.S. Slow differential rotation of the Earth's inner core indicated by temporal changes in scattering // Nature 405, 445–448, 2000.

УДК 550.34

ПАРАМЕТРЫ СЕЙСМИЧЕСКОГО ИСТОЧНИКА 03.09.2017 г. В СЕВЕРНОЙ КОРЕЕ ПО НАБЛЮДЕНИЯМ НА РЕГИОНАЛЬНЫХ РАССТОЯНИЯХ

В.М. Овчинников

ИДГ РАН

3 сентября 2017 г. в Корейской народно-демократической республике был проведен ядерный взрыв, эпицентр которого расположен вблизи испытаний 2006, 2009, 2013, 2015 и 2016 годов. Проведен анализ сейсмограмм, в основном, на регио-нальных расстояниях до 110. Получены оценки таких важных параметров источника как скалярный сейсмический момент, моментная магнитуда, полный тензор сейсмического момента (TCM). ТСМ может быть разложен на непосредственно связанную с взрывом изотропную часть, на которую приходится 47.2% излучения и дополнительную, вероятно связанную с подъемом купола взрыва и его последующего опускания, часть, на которую приходится 41.1%.

Введение

Подземный ядерный взрыв 3 сентября 2017 г. был проведен на северо-востоке КНДР в горном массиве, сложенном гранитами. Сейсмические волны от взрыва были зарегистрированы на большом числе сейсмических станций в широком диапазоне эпицен-тральных расстояний от 1 до 1700. Он сопровождался рядом интересных явлений: слабыми землетрясениями (возможно афтершоками) [Kim et al., 2018; Liu at al., 2018], один из которых, произошедший через 8.5 мин спустя, возможно, связан с обрушением полости [Tian et al., 2018]; зона разрушений при взрыве вышла на поверхность, где вертикальные смещения достигают 10 см [Matt Wey, 2017; Wang, 2018].

Такой взрыв предоставляет наилучшие возможности для изучения особенностей сейсмического источника на основе все более широкого использования для этой цели тензора сейсмического момента [Ford et al., 2010; Vavryčuk & Kim, 2010; Tian et al., 2018; Han et al., 2017]. Полученные на его основе оценки изотропной части излучения взрыва в 2017 г. сильно различаются: 87% в публикации [Han et al., 2017] и 47% в [Incorporated..., 2017]. ТСМ представляет собой общую теоретическую основу для описания сейсмических источников на основе обобщенных пар сил [Dreger & Helmberger, 1993] и широко применяется для описания механизма сильных землетрясений. Полагают даже, что ТСМ может заменить другие, более традиционные оценки параметров источника, такие как, например, магнитуда и механизм очага из знаков первых вступлений. В данной работе основное внимание сосредоточено на определении ТСМ на региональных расстояниях от 300 до 1100 км в диапазоне низких частот 0.05–0.1 Гц и возможности его использования для верификации источника как взрыва.

Использованные сейсмические данные

Использованы данные сейсмических станций на региональных расстояниях от 300 до 1100 км в Китае и Южной Корее. На рис. 1 показана карта с взаимным расположением сейсмических станций с эпицентральными расстояниями менее 160 и испытательного полигона в Северной Корее.

Рис. 1. А - сейсмические станции (треугольники) на расстоянии от 3 до 150от полигона, зарегистрировавшие сейсмическое явление (звездочка) 3 сентября 2017 г. Б – пример сейсмограмм-вертикальной Z, трансверсальной Т и радиальной R компонент взрыва на станции MDJ в полосе частот 0.05-0.1 Гц: чертой со стрелкой отмечены вступления волны Релея (LR) и Лява(LQ). В - монтаж сейсмограмм взрыва: отрезками прямых отмечены вступления волн Pn, Sn, Lg и LR

200

200

200

На всех континентальных станциях (черные треугольники на карте), с углом охвата эпицентра около 180° , первое вступление имеет положительную полярность. Положительная полярность первого вступления наблюдается также на станциях Японии (серые треугольники), обеспечивающих азимутальный охват эпицентра источника до 270° . На монтаже сейсмограмм (рис. 1, В) показаны основные вступления волн, связанных со структурными особенностями земной коры в районе наблюдений. Из него видно, что поперечные волны S_n слабо выражены и имеют малую амплитуду. Эти два признака указывают на изотропный характер излучения из очага. По амплитуде доминируют поверхностные волны LR. Измеренные времена первых вступлений волн P_n на континентальных станциях описываются регрессионной зависимостью

$$t = (6.28 \pm 0.436) + (0.126 \pm 0.0008)\Delta \tag{1}$$

где Δ – расстояние в км.

Другой особенностью волнового поля от сейсмического явления в Корее 03.09.2017 г., также отмечавшейся при взрывах в КНДР [Vavryčuk et al., 2013, 2014], является присутствие на сейсмограммах в низкочастотном диапазоне 0.05–0.1 Гц горизонтально-поляризованной волны Лява (рис. 1, Б). К примеру, амплитуда волны Лява на станции MDJ равна 1/3 амплитуды волны Релея, что указывает на значимую величину неизотропного излучения сейсмического источника. Частота колебаний в волнах Лява и Релея 0.06–0.08 Гц.

Определение тензора сейсмического момента

Рассматривается точечный источник сейсмических волн с известным пространственным положением и временем возникновения, размещенный в слоисто-стратифицированной среде. На достаточно больших расстояниях $r(x_s - xr)$ от источника сме-щение u(r, t) в момент времени t можно выразить через тензор момента источника $M = (m_{pq})$ и свертку производной нормированной временной функции источника с производной по пространственной координате тензора Грина G [Aki & Richards, 2002]

$$u_{i}(r,t) = \sum_{p=1}^{3} \sum_{q=1}^{3} m_{pq} \dot{f}(t) * \frac{\partial}{\partial x_{q}} G_{ip}(r,t)$$
(2)

где * обозначает свертку по времени, i = 1,2,3 - три компоненты смещения в системе отсче-та, связанной с ориентацией сейсмоприёмников в точке наблюдения,<math>r – расстояние между источником и точкой наблюдения. Для тензора m_{pq} используем разложение на элементарные диполи сил [Bouchon, 1980; Bouchon, 1981]

$$m_{\rm pq} = \sum_{i=1}^{6} a_i m_{\rm pq}^i$$
(3)

где

$$m^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} m^{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} m^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} m^{4} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$m^{5} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} m^{6} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(4)

 m^1 , m^2 , m^3 – двойные диполи с моментом (DC), m^4 , m^5 – компенсированные линейные диполи (CLVD), m^6 – три диполя без момента (ISO). Таким образом, TCM источника может быть представлен в виде линейной комбинации шести элементарных безразмерных тензоров m^i , описывающих все возможные силовые модели сейсмических источников, с помощью которых можно моделировать различные виды реальных сейсмических источников. Из (3) и (4) также следует, что сейсмический тензор момента может быть представлен через коэффициенты a_i [Кті́žová et al., 2013]

$$M = \begin{pmatrix} -a_4 + a_5 & a_1 & a_2 \\ a_1 & -a_5 + a_6 & a_3 \\ a_2 & a_3 & a_4 + a_5 + a_6 \end{pmatrix}$$
(5)

В качестве временной функции мы будем использовать ступенчатую функцию (функция Хевисайда). Для численных расчетов теоретических сейсмограмм u(r, t) использована достаточно хорошо документированная реализация программного кода «AXITRA» [Coutant, 1989].

В общем случае задача инверсии ТСМ состоит в определении коэффициентов a_i (i = 1, 2, ..., 6) и координат гипоцентра $r_s = (\phi, \lambda, h)$ из решения оптимизационной задачи [Dreger & Helmberger, 1993]

$$\psi(a_{j}, \mathbf{r}_{s}) = \min_{a_{j}, \mathbf{r}_{s}} \left(\sum_{j=1}^{J} \sum_{i=1}^{N} \sum_{k=1}^{3} (S_{ijk} - u_{ijk})^{2} \right)$$
(6)

где S_{ijk} – наблюденная *i*-ая компонента (*i* = 1,2,3) сейсмограммы на *j*-ой станции (*j* = 1, 2,..., *J*), *i* = 1,2,..., *N* – число временных отсчетов сеймограммы, u_{ijk} определяется формулой (2). В формулировке (6) задача является нелинейной относительно неизвестных. Ее можно существенно упростить, если воспользоваться координатами эпицентра источника из независимых наблюдений, в частности

космических. На основе спутниковых данных об изменении топографии района до и после проведения взрыва получены значения $41^{0.3}$ с.ш. и $129^{0.08}$ в.д. [Matt Wey, 2017] и близкие $41^{0.301}$ с.ш. и $129^{0.078}$ в.д. [Wang et al., 2018]. В результате задача (7) при фиксированной глубине приводится к линейной системе уравнений относительно неизвестных a_j . Из космических данных также следует, что глубина взрыва h < 800 м, так как высота эпицентра над уровнем моря составляет 2205 м, а входов в две технологические штольни – 1405 и 1360 м.

Для решения задачи (6) необходимо рассчитать импульсные характеристики сре-

ды $G_{ip}(r,t)$, определяющие зависящую от строения земной коры, по которой распространяются сейсмические волны от источника к приемнику, временную структуру сейсмограммы. В Табл. 1 приведены параметры модели среды, а на рис. 2. показан скоростной разрез этой модели. В основном модель соответствует модели [Vavryčuk et al., 2013], ранее использовавшейся для анализа взрыва в Корее в 2013 г. Скорректированы только значения скоростей на границе 32 км в соответствии с годографом (1).

Н, км	α _i , км/с	β _i , км/с	ρ _i , г/см ³	$Q_{\rm p}$	$Q_{\rm s}$
0.0	4.50	2.560	2.100	200	100
0.5	5.30	3.120	2.440	300	150
1.3	5.70	3.290	2.640	300	150
6.0	6.01	3.410	2.790	400	200
18.0	6.32	3.590	2.860	600	300
24.0	6.73	3.820	3.040	1000	500
32.0	7.96	4.630	3.240	1000	500
40.0	8.15	4.710	3.240	1450	725
80.0	8.30	4.770	3.140	1450	725

Таблица 1. Параметры *) модели земной коры и верхней мантии

*) Н – глубина верхней границы слоя, α_i , β_i – скорость продольных и поперечных волн, ρ_i – плотность среды в слое, Q_p , Q_s – безразмерные факторы неупругого поглощения для продольных и поперечных волн.

Рис. 2. Скоростной разрез восьмислойной модели земной коры и верхней мантии, использованной для расчета функций Грина

При решении системы линейных уравнений, следующей из оптимизационной задачи (6), выяснилась ее неустойчивость из-за плохой обусловленности матрицы условных уравнений. Поэтому были подобраны три станции – ВЈТ, MDJ и INCN, обеспечивающие максимальный азимутальный охват эпицентра и отношение максимального собственного значения к минимальному, равное 12. Из этих 9 сейсмограмм (три станции, три компоненты) длительностью 400 с получены значения коэффициентов a_j и их погрешности σ_{aj} , приведенные в Табл. 2. Из данных Табл. 2 для ТСМ и формулы (4) имеем:

$$M = \begin{pmatrix} -0.05 & -0.041 & 0.59 \\ -0.041 & 0.594 & 0.107 \\ 0.59 & 0.107 & 1.967 \end{pmatrix} 10^{16} \text{ Hm}$$
(7)

Таблица 2. Параметры *a*_i и их погрешности из решения задачи (6)

<i>а</i> _ј *10 ¹⁷ , Нм	0407	.593	.106	.491	0.441	1.034
$\sigma_{ij}^{*}10^{17}$.0036	.0070	.0129	.0214	.0219	.0222

Согласованность экспериментальных и теоретических сейсмограмм, для полученного тензора сейсмического момента, показана на рис. 3. В качестве количественной меры согласованности использована относительная ошибка описания реальных сейсмограмм теоретическими

$$\delta_{jk} = \frac{\sum_{i=1}^{N} (S_{ijk} - u_{ijk})^2}{\sum_{i=1}^{N} u_{ijk}^2}$$
(8)

Значения ошибки для каждой компоненты Z, N–S, E–W и каждой станции приведены в Табл. 3. Физически σ_{jk} показывает, какая доля энергии реальной сейсмограммы не описывается теоретической сейсмограммой. Визуально хорошая согласованность для сейсмограмм станций MDJ, BJT, INCN, а также TJN (данные последней в расчете TCM не использовались) видна на рис. 3.

Таблица 3. Относительные ошибки описания реальных данных синтетическими сейсмограммами и знаки первого вступления (Жирным шрифтом выделены станции, по сейсмограммам которых определен ТСМ)

Код станции	Азимут,	Расстояние, км	Знак 1-го вступления	σ, N-S	σ, E-W	σ, Ζ
SEHB	191.3728	343.956	+	0.23	2.9	0.31
MDJ	6.9347	370.9329	+	0.14	0.09	0.2
SEO2	203.8014	461.77	+	0.12	1.27	0.9
INCN	206.6006	474.1183	+	0.26	0.3	0.23
CHJ2	190.8584	500.6755	+	0.14	0.3	0.26
TJN	195.2811	566.407	+	0.47	0.32	0.16
BUS2	179.4284	671.723	+	0.25	3.12	0.23
BJT	266.5363	1100.128	+	0.14	0.2	0.02

Рис. 3. Теоретические (серый цвет) и экспериментальные (черный цвет) сейсмограммы для станций MDJ, INCN, BJT, TJN. Размерность по оси ординат U, [м]

Большие значения ошибки для горизонтальной компоненты Е–W связаны с влиянием шума, который теоретические сейсмограммы не описывают, а амплитуда сигнала от взрыва на них в 3–4 раза меньше, чем на вертикальной компоненте Z и лишь немного превышает уровень шума. Средняя величина для этого решения TCM $\sigma_1 = 0.265 \pm 0.195$ (по столбцам N-S и Z из Табл. 3).

Из (7) определяем скалярный сейсмический момент [Silver & Jordan, 1982]

$$\mathbf{M}_0 = \sqrt{\frac{\mathbf{m}_{11}^2 + \mathbf{m}_{22}^2 + \mathbf{m}_{33}^2}{2}} = 1.6*1017 \text{ Hm}$$

Моментная магнитуда $M_w = 2/3 \log(M_0) - 6.1 = 5.4$.

Для физической интерпретации TCM (7) можно разложить на три составляющих: изотропную (три пары ортогональных диполей без момента, ISO) двойную пару сил с моментом (DC) и компенсированный дипольный момента (CLVD) [Vavryčuk, 2015]

$$M = M_{ISO} + M_{DC} + M_{CLVD}.$$

$$M_{\rm ISO} = 1/3(M_1 + M_2 + M_3), M_{\rm CLVD} = 2/3(M_1 + M_3 - 2M_2), M_{\rm DC} = 1/2(M_1 - M_3 - |M_1 - M_3 - 2M_2|),$$

где $M_1 > M_2 > M_3$ – собственные значения тензора (7).

При такой декомпозиции TCM 47.2% могут быть описаны изотропным механизмом излучения (ISO), 41.1% – компенсированным линейным диполем (CLVD) и 11.7% связаны со сдвиговой компонентой (DC). Полученная величина изотропной компоненты согласуется с результатом из работы [Incorporated..., 2017], где изотропная компонента составляет 47%. В публикации же [Han et al., 2017] по данным станций в Китае на расстояниях от 100 до 300 км для изотропного излучения получено значение 85%. Различие, по-видимому, связано с тем, что в [Han et al., 2017] для расчета ТСМ использовались фрагменты сейсмограмм с продольными и поперечными волнами, в то время как более низкие значения в настоящей работе получены по фрагменту с низкочастотными поверхностными волнами.

Полученный характер распределения излучения может быть обусловлен двойным источником при мощных взрывах, когда кроме компоненты, связанной с развитием полости и разрушением вмещающей среды, возникает дополнительная компонента, связанная с влиянием свободной поверхности – подъем купола в эпицентре с последующим опусканием.

Рассмотрим теперь вариант решения, полагая, что сейсмический источник не имеет изотропной составляющей. Формально это означает, что сумма диагональных элементов TCM равна нулю. То есть задача (6) решается с дополнительным ограничением $a_4 + 2a_6 = 0$.

Для этого случая на сдвиговую компоненту (DC) приходится 62.7% и на линейный компенсированный диполь (CLVD) – 37.3%. Скалярный сейсмический момент составил 1.4*10¹⁷ Нм. При этом теоретические сейсмограммы только немного хуже описывают реальные данные.

Относительные ошибки для станций MDJ, INCN, BJT приведены в Табл. 4, а на рис. 4 приведено сравнение теоретических и реальных сейсмограмм в полосе частот 0.05–0.08 Гц.

Таблица 4. Относительные ошибки для	решения без изотропного излучения
-------------------------------------	-----------------------------------

Код станции	δ, N-S	δ, Ε-W	δ, Ζ
MDJ	0.17	0,93	0.32
INCN	0.2	0,66	0.014
BJT	1.38	0.37	0,1

Рис. 4. Сравнение реальных (черная линия) и синтетических (серая линия) сейсмограмм для ТСМ без изотропной компоненты излучения на станциях MDJ и INCN

Средняя величина относительной ошибки для этого решения $\delta_2 = 0.195 \pm 0,133$. Проверка гипотезы о равенстве средних по t – критерию показывает, что δ_1 и δ_2 статистичеки неразличимы. Отсюда следует, что невозможно отдать предпочтение одному из двух возможных решений и, следовательно, идентифицировать сейсмический источник как подземный взрыв на основе TCM, рассчитанного по низкочастотным поверхностным волнам. Но знаки первых вступлений, о которых говорилось выше, указывают на взрывной характер источника.

Следует отметить, что скалярные сейсмические моменты для двух решений $-1.6*10^{17}$ и $1.4*10^{17}$ Нм, различаются незначительно.

Заключение

Приведена технология оценки тензора сейсмического момента на примере сейсмического явления 3 сентября 2017 г. по данным сейсмических станций на региональных расстояниях.

Показано, что 47.2% излучения сейсмического источника представляет изотропную часть (ISO), характерную для взрыва, 11.7% приходится на сдвиговую компоненту (DC) и 41.1% – на излучение, описываемое линейным компенсированным диполем (CLVD).

Показано, что идентификация сейсмического источника как взрыва на основе только TCM, рассчитанного в низкочастотном диапазоне по поверхностным волнам, невозможна и требуются дополнительные данные, например, о знаках первых вступлений.

Определены скалярный сейсмический момент $M_0 = 1.6*10^{17}$ Нм и моментная магнитуда $M_w = 5.4$.

Работа выполнена при финансовой поддержке Программы РАН № 56.

Литература

Aki, K., P.G: Richards, Quantitative seismology, University Science Books, Sausalito, California, 2002. – 704 p.

Bouchon M. Calculation of complete seismograms for an explosive source in a layered medium // Geophysics.1980, v. 45. p. 197–203.

Bouchon, M. A simple method to calculate Green's functions for elastic layered media, 1981. Bull. Seism. Soc. Am. 71, 959–971.

Coutant, O. Program of numerical simulation AXITRA, 1989. Tech. rep., LGIT, Grenoble, France.

Dreger, D.S., Helmberger, D.V. (1993). Determination of source parameters at regional distances with three-component sparse network data, J. Geophys. Res., 98, no. B5, 8107–8126.

Ford S.R., D.S. Dreger, W.R. Walter (2010). Network Sensitivity Solutions for Regional Moment-Tensor Inversions / Bulletin of the Seismological Society of America, Vol. 100, No. 5A, pp. 1962–1970, doi: 10.1785/0120090140.

Incorporated Research Institutions for Seismology, "Special event: 2017 North Korean nuclear test; http://ds.iris.edu/ds/nodes/dmc/specialevents/2017/ 09/03/2017-north-korean-nuclear-test/.2017.

Han L., Wu Z, Jiang G., Liu J. Properties of three seismic events in September 2017 in the northern Korean Peninsula from moment to ensor inversion. 2017. <u>http://www.cenc.ac.cn/cenc/dzxx/336221/index.html</u>t/.

Kim W-Y., D. Schaff, P.G. Richards, (2018). Location and identification of seismic evnts around North Korean nuclear test site followind the 3 september 2017 underground nuclear test. Вестник НЯЦ РК, вып 2(74), с. 11–19.

Křížová D, J. Zahradník, A. Kiratzi (2013). Resolvability of Isotropic Component in Regional Seismic Moment Tensor Inversion. Bulletin of the Seismological Society of America, Vol. 103, No. 4, pp. 2460–2473, 2013, doi: 10.1785/0120120097.

Liu J., L. Li, J. Zahradnik, E. Sokos, C. Liu, X. Tian, North Korea's 2017 test and its non-tectonic aftershock. Geophys. Res. Lett. 2018, doi:10.1002/2018GL077095.

Matt Wey http://weilab.uri.edu/ Preliminary InSAR results of the September 3, 2017 North Korea Nuclear Test .

Tian D., J. Yao, L. Wen, (2018). Collapse and Earthquake Swarm after North Korea's 3 September 2017 Nuclear Test. Geophys. Res. Lett, doi:10.1029/2018GL077649.

Silver PG, Jordan T.H. (1982). Optimal estimation of the scalar seismic moment. Geophys J Roy Astr Soc, V. 70, p. 755–787

Vavryčuk V., So Gu Kim. Nonisotropic radiation of the 2013 North Korean nuclear explosion Geophys. RESEARCH LETTER, doi:10.1002/2014GL061265, p. 1–9.

Vavryčuk V., Kim S.G. Moment Tensor Inversion of the 2013 North Korean nuclear explosion on February 12, 2013, Second European conference on earthquake engineering and seismology, Istambul Aug. 25–29, 2014.

Vavryčuk V. Moment Tensors: Decomposition and Visualization. Encyclopedia of Earthquake Engineering, Springer-Verlag Berlin Heidelberg. 2015, doi: 10.1007/978-3-642-36197-5_288-1.

Wang T., Q. Shi, M. Nikkhoo, S. Wei, S. Barbot, D. Dreger, R. Bürgmann, M. Motagh, Qi-Fu Chen. The rise, collapse, and compaction of Mt. Mantap from the 3 September 2017 North Korean nuclear test. Science 10.1126/science.aar7230 .2018.

УДК 550.8.08

ИДЕНТИФИКАЦИЯ СИГНАЛОВ СЛАБЫХ СЕЙСМИЧЕСКИХ СОБЫТИЙ ПО ЗАПИСЯМ МАЛОАПЕРТУРНОЙ ГРУППЫ ПРИ МОНИТОРИНГЕ ЛОКАЛЬНОЙ СЕЙСМИЧНОСТИ ГОРНЫХ ВЫРАБОТОК

А.В. Варыпаев, И.А. Санина

ИДГ РАН

Предлагается методика многоканальной обработки записей малоапертурной группы, ориентированная на идентификацию сигналов слабых сейсмических событий, наблюдаемых на фоне естественных сейсмических помех. Методика апробирована на модельных данных и реальных записях, зарегистрированных малоапертурной группой в районе г. Губкин, где ведётся разработка залежей железной руды и регулярно проводятся взрывные работы. Идентификация сигналов произ-